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A longstanding problem in geostatistics is that kriging assigns end samples in strings of data unreasonably 
large weights.  These weights are theoretically valid, but suboptimal estimates may result when there are 
geological trends in the variable near contacts.  A number of ad-hoc corrections exist each with pros and 
cons; none are fully automatic with a well defined measure of optimality.  A new method for estimation in a 
finite domain is proposed.  This method is referred to as Finite Domain Kriging.  The method is based on 
kriging with a successively larger number of data.  The total number of relevant data (n) are established, 
then n kriging matrices are solved.  The first matrix has the closest single data value (n-1 weights are set to 
zero), the second has the two closest data (n-2 weights are set to zero), and so on.  The final matrix has all 
n data.  The kriging weights used for estimation are the average of the weights from the n successive 
kriging runs.  Each kriging run is optimal, yet with different smoothing and a different treatment of data at 
the end of strings.  The result is a set of weights that does not give undue influence to data values at the end 
of strings.  The methodology is developed for one string and for multiple strings with examples.  Cross 
validation shows that Finite Domain Kriging out performs kriging with all data used in one step. 

Introduction 

Stochastic simulation has become a powerful tool in many areas of natural resources characterization.  It is 
widely used to quantify uncertainty in energy and mineral resources such as natural gas, oil and coal.  Other 
applications consist of generating input for flow simulation and calculating the likelihood of exceeding 
critical threshold in contamination studies.  Geostatistical simulation relies on kriging to model local 
conditional distributions.  Simulation is performed by drawing from such conditional distributions. 

An implicit assumption of kriging is that the study area is embedded within an infinite domain.  This causes 
kriging to give much higher weights to end samples in strings of data. Despite the overweighting of the 
boundary samples is theoretically valid, this ‘string effect’ of kriging can cause serious problems when 
estimating variables of interest.  Strings of data are often observed in mining and petroleum applications 
where the data are collected along wells or drillholes.  The artifact weighting of boundary samples can 
result in biased estimation, especially when the data exhibits strange trends with boundary/border effects. 

A number of ad-hoc solutions have been proposed for the ‘string effect’ of kriging.  The most common are 
to extend the string or wrap the string (Deutsch, 1992, 1993).  These approaches attempt to fix the string 
effect either by changing the data configuration or the covariance function. They do not yield significant 
improvement in the results.  Recently a new Distance Constrained approach was also proposed by Babak 
and Deutsch (2006).  Despite the fact that this approached removes large weights for end samples, it 
introduces many constraints that may lead to suboptimal estimation. 

A new approach is introduced to correct the string effect.  The method is referred to as Finite Domain 
Kriging.  The problem of kriging with strings of data is explained.  The new methodology is developed.  
Case studies are then shown to illustrate the method. 

Finite Domain Kriging: Single String Case 

Let us consider n adjacent data ,,,1 ni K=  at locations ,,,1, niui K= aligned in a string.  Consider 
now the problem of estimating the value of a variable of interest X at an unsampled location u* using the 
proposed Finite Domain Kriging approach.  The Finite Domain Kriging modifies the ‘traditional’ Kriging 



 119-2 

techniques in that it performs particular type of Kriging (Ordinary Kriging or Simple Kriging) as many 
times as there are conditioning data, that is, n. Each time k, ,,,1 nk K=  kriging is performed based on the 
k closest data from the string.  After assembling all n estimates by kriging, a Finite Domain Kriging 
estimator is taken as an average of them.  Due to the fact that each of the n Kriging estimators is optimal, 
resulting Finite Domain Kriging estimator is also an optimal estimator.  Let us now formulate Finite 
Domain Kriging approach mathematically.  

Finite Domain Simple Kriging (FDSK) 

The Finite Domain Simple Kriging (FDSK) provides a model of the unsampled value )(uX  as the 

following linear combination of the data in a string ,,,1),( niXX ii K== u  and the population mean 
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where ),,( 1
k
k

kk XXX K= , ,,,1 nk K=  denotes the vector of k closest data in a string to the 

estimation location u; ,))(,),(( 1
Tk

k
kk uu λλλ K=  ,,,1 nk K=  denotes the vector of the Simple 

Kriging weights calculated from the normal system of equations for the estimation location u  based on the 
k closest data in the sting 
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where ,,,1,)),(),(( kjiXXCov ji L=uu  ,,,1 nk K= denotes data-to-data covariance function 

and ))(),(( j
k
iXXCov uu  is data-to-estimation point covariance function.  

Because the Finite Domain Simple Kriging estimator is the linear combination of the Simple Kriging 
estimators each of which is linear unbiased estimator and exact interpolator; Finite Domain Simple Kriging 
estimator is also a linear unbiased estimator and it is an exact interpolator.  The variance of the Finite 
Domain Simple Kriging estimate at the estimation location u can be calculated as  
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This could easily be solved by considering the standard estimation variance equation and average weights. 

Finite Domain Ordinary Kriging (FDOK) 

The Finite Domain Ordinary Kriging (FDOK) provides a model of the unsampled value )(uX  as the 

following linear combination of the data in a string ,,,1),( niXX ii K== u   
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where ),,( 1
k
k

kk XXX K= , ,,,1 nk K=  denotes the vector of k closest data in a string to the 

estimation location u; ,))(,),(( 1
Tk

k
kk uu λλλ K=  ,,,1 nk K=  denotes the vector of the Ordinary 

Kriging weights calculated from the normal system of equations for the estimation location u  based on the 
k closest data in the sting 
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where μ  is a Lagrange multiplier, ,,,1,)),(),(( kjiXXCov ji L=uu  ,,,1 nk K= denotes data-

to-data covariance function and ))(),(( j
k
iXXCov uu  is data-to-estimation point covariance function. 

The covariance function is calculated under assumption of stationarity though the semivariogram model. 

Because the Finite Domain Ordinary Kriging estimator is the linear combination of the Ordinary Kriging 
estimators, each of which is a linear unbiased estimator and exact interpolator; Finite Domain Simple 
Kriging estimator is also a linear unbiased estimator and it is an exact interpolator. The variance of the 
Finite Domain Simple Kriging estimate at the estimation location u can be calculated in the same way as 
was calculated for the Finite Domain Simple Kriging estimator and is given by 
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Once again, this could more easily be solved by considering the average weights. 

Small Examples: Structure of the Finite Domain Kriging Weights 

To compare the kriging weights obtained using the ‘traditional’ Kriging with the Finite Domain Kriging 
approaches several small studies were performed.  The weights were calculated for four estimation 
locations, (1, 7), (1.8, 7), (2.8, 7) and (3.8,7), based on the string of 7 data located at (1,0), (2,0), (3,0), 
(4,0), (5,0), (6,0) and (7,0), respectively.  Isotropic spherical variograms with a contribution of one and 
ranges of correlation 2 and 20 are considered for analysis.  Results for the weights are shown in Figure 1 
for comparison of the Ordinary Kriging and the Finite Domain Ordinary Kriging data weights and in Figure 
2 for comparison of the Simple Kriging and the Finite Domain Simple Kriging weights.  

Figures 1 and 2 show that both Finite Domain Kriging approaches significantly reduce the artificially 
higher weights given to the end samples of the sting.  Furthermore, also note that when the estimation 
location is located far from the data in the string (outside of the range of correlation), the Finite Domain 
Simple Kriging results in the same weights and estimate as Simple Kriging.  Moreover, note the 
smoothness of the Finite Domain Kriging weights.  The ad hoc distance constrained correction proposed 
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for string affect removal by Babak and Deutsch (2006) resulted in very non-smooth weights, see Figures 3 
and 4.  The smoothness in the structure of the Finite Domain Kriging weights is connected to the theoretical 
basis of the approach. 

Structure of the Finite Domain Kriging Weights for the Infinite String 

Finite Domain Kriging has a very interesting property.  If we consider estimation at a particular location 
based on a very long string of data (‘infinite’), we can observe that at some point it becomes irrelevant 
weather you use the whole string of data or just portion of it. That is, Finite Domain Kriging weights 
assigned to the ‘infinite’ string of data will be the virtually the same as assigned to its substring and zeros 
for the rest of the data in a string of data. Mathematically we can write that there exists number l of closest 
data in the ‘infinite’ string to the estimation such that the following inequality holds 
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where T
n ),,,( 21 λλλλ K=  is the n by 1 vector of weights assigned to the ‘infinite’ string, 

T
lkkk )~,,~,~(~

1 ++= λλλλ K  is the l by 1 vector of weights assigned to the l closest data in the string to the 

estimation location; and ε  is a very small value, say .0001.0=ε  Further we will refer to property (8) of 
the Finite Domain Kriging as convergence property.  

To illustrate this convergence property, the following small case study was conducted. A string of 3000 
data located at (1,0), (2,0), …, (3000,0), respectively, was considered for estimation of location (100,7) 
using Finite Domain Kriging techniques based on a Spherical variogram model with the range of 
correlation 500.  Finite Domain Kriging was performed using 25, 100, 250, 500, 1000, 1500 and 3000 
closest samples (the whole string) in the string.  Figure 5 shows the resulting change in the structure of the 
Finite Domain Simple Kriging weights with respect to the number of closest data.  Note that there is 
virtually no difference in Finite Domain Simple Kriging weights when performing estimation based on 
1500 (half string) or more data or full ‘infinite’ string. Specifically, the difference in the left hand side of 
inequality (8) for Finite Domain Simple Kriging weights calculated based on the full string of 3000 data 
and 1500 data is less than 5.1169e-006.  The difference in the left hand side of inequality (8) for all 
considered number of data in the Finite Domain Simple kriging estimation are given in the table below 

 

25 data 100 data 250 data 500 data 1000 data 1500 data 

0.0061 0.0025 0.0023 0.0008 0.0007 0.0000 

 

Figure 5 also shows the change in the structure of the Finite Domain Ordinary Kriging weights with respect 
to the number of closest data.  Looking at Figure 5 we can see that there is virtually no difference in Finite 
Domain Ordinary Kriging weights when performing estimation based on 1500 (half string) or more data or 
full ‘infinite’ string.  Specifically, the difference in the left hand side of inequality (8) for Finite Domain 
Ordinary Kriging weights calculated based on the full string of 3000 data and 1500 data is less than 
5.2874e-006.  The difference in the left hand side of inequality (8) for all considered number of data in the 
Finite Domain Simple kriging estimation are given in the table below 
 

25 data 100 data 250 data 500 data 1000 data 1500 data 

0.0062 0.0025 0.0023 0.0008 0.0007 0.0000 

Note that results of the Finite Domain Simple Kriging estimation and Finite Domain Ordinary Kriging 
estimation are very similar, this is because Simple Kriging and Ordinary Kriging results in very similar 
weights due to the closeness of the estimation location to the string in terms of range of continuity of the 
considered variable variogram. 
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Finite Domain Kriging: Generalization to the Case of Multiple Singles 

Let us consider the situation of multiple strings containing possibly different number of data.  Recall that 
the Finite Domain Kriging in the single string case is basically an average of several ‘traditional’ Kriging 
results obtained using different neighborhood search strategies.  When we deal with the situation of 
multiple strings the following question arises: Should we consider each string separately for the Finite 
Domain Kriging or all strings at the same time?  Two options will be considered. 

Finite Domain Kriging I performs the ‘traditional’ Kriging as many times as there are conditioning data, 
that is, n.  Each time k, ,,,1 nk K=  kriging is performed based on the k closest data without considering 
if they are from different strings or the same string.  Thus, basically, the procedure of the Finite Domain 
Kriging I is the same as was described for the single string case. 

The second option, Finite Domain Kriging II, is slightly more complicated.  We will first assume that each 
string l, ,,,1 Ll K=  contains at least n data. Then, in order to obtain Finite Domain Kriging II estimate, 
the ‘traditional’ Kriging is performed n times. Each time k, ,,,1 nk K=  kriging is performed based on a 
set of k closest data from each string.  If the strings contain a different number of data, say string j  
contains only m  ( nm < ) data, then procedure is almost the same.  Except that in order to obtain final 
Finite Domain Kriging II, each time k, ,,,1 mk K=  kriging is performed based on a set of k closest data 
from each string; while each time k, ,,,1 nmk K+=  kriging is performed based on a set of k closest data 
from all strings expect for string j (from string j only m data are selected).  This could be extended to the 
case when we have different amount of data in each string. 

Practical Applications 

Data 

To assess the difference between the Finite Domain Kriging approaches and the ‘traditional’ Simple and 
Ordinary Kriging, a case study of the real data from a petroleum reservoir (data set 1). Locations of the 
available vertical wells in the XY plane are shown in Figure 6.  Figure 6 also shows the histograms of the 
data.  Figure 7 shows the experimental variograms and their theoretical fits for the variable under study. 

Estimation 

Simple Kriging, Ordinary Kriging, Finite Domain Simple Kriging I, Finite Domain Ordinary Kriging I, 
Finite Domain Simple Kriging II and Finite Domain Ordinary Kriging II were applied for estimation of the 
study domain.  

Figure 8 shows the middle slice in the XY plane of the 3D model for the data using Ordinary Kriging and 
Finite Domain Ordinary Kriging I.  Figure 8 also shows location of the wells used in estimation and maps 
of the differences and smoothed differences between Finite Domain Ordinary Kriging I and Ordinary 
Kriging estimates.  Figure 9 shows the middle slice in the XY plane of the 3D model for the data using 
Simple Kriging and Finite Domain Simple Kriging I.  Figure 9 also shows location of the wells used in 
estimation and maps of the differences and smoothed differences between Finite Domain Simple Kriging I 
and Simple Kriging estimates.  Note that when estimating using any of the considered approaches the 
following parameters were used: min and max number of data for estimation were set to 10 and 20, 
respectively; maximum search radii were set to maximum variogram ranges. 

There are significant differences in the results of the Finite Domian Kriging approaches and ‘traditional’ 
Kriging mostly far from the well locations (at the boundaries of the study domain).  This is reasonable and 
expected.  The maximum influence of the data in the string ,,,1, LsiX i K=  on the estimation location 
u* is defined as maximum relative weight given by an estimation location to the data in the string, that is, 
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where T
Ls uuu *))(,*),((*)( 1 λλλ K=  denote the traditional (Simple, Ordinary) Kriging weights. 

Example maps of the maximum influence obtained using Simple and Ordinary Kriging based on isotropic 
spherical variograms with nugget of zero and range of correlation 20 for estimation of finite domain based 
on string of 11 data are shown in Figure 10.  It can seen from Figure 10 that when the location of interest is 
situated close to the string of data, then the data in the string which is positioned on the shortest distance to 
the location of interest receives the largest weight in Kriging, and, thus, have the largest influence on the 
result of estimation.  However, if the location of interest is situated far (not necessarily a distance larger 
than the range of correlation) from the string of data, then one of the boundary data in the string receives 
the largest weight in Kriging, and, thus, have the largest influence on the result of estimation.  

Considering Figure 10, we can easily explain the maps in Figures 8-9.  Specifically, due to long range of 
continuity of the variable under study, we observe only slight difference in the estimates produced by Finite 
Domain Kriging approaches and traditional kriging (this is because there is no string effect in the 
estimates).  However, when the estimation location is far from the well, the string effect becomes important 
and the difference in the estimates becomes more and more pronounced.  To illustrate this point via 
example a subset of 100 well was removed from the database for the estimation of the domain of interest.  
Figure 11 shows the middle slice in the XY plane of the 3D model for the data using Ordinary Kriging and 
Finite Domain Ordinary Kriging I.  Figure 11 also shows location of the 100 wells not used in estimation 
and the map of the wells used in estimation; as well as the maps of the differences and smoothed 
differences between Finite Domain Ordinary Kriging I and Ordinary Kriging estimates.  Figure 12 shows 
the middle slice in the XY plane of the 3D model for the data using Simple Kriging and Finite Domain 
Simple Kriging I; locations of the 100 wells used in estimation and maps of the differences and smoothed 
differences between Finite Domain Simple Kriging I and Simple Kriging estimates. 

Conclusions 

A new approach to kriging in a finite domain using strings of data is proposed.  This approach, referred to 
as Finite Domain Kriging, provides a linear unbiased estimate.  Finite Domain kriging estimates are 
obtained as an average (or expected) value of the optimal kriging estimators for different search 
neighborhoods.  Simple and Ordinary Finite Domain Kriging are possible. 

The proposed approaches for estimation of a finite domain using strings of data were applied to real data 
set from petroleum reservoir.  All Finite Domain Kriging approaches were shown to reveal and reduce the 
edge effect in the considered case study.  The most significant reduction in the string effect was observed in 
Finite Domain Kriging I approach. 
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Figure 1: Structure of the Finite Domain Simple Kriging (solid line) and Simple Kriging (dashed line) 
weights when estimating locations: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) using Spherical variogram 
model with the range of correlation 20 
 

      

 
Figure 2: Structure of the Finite Domain Ordinary Kriging (solid line) and Ordinary Kriging (dashed line) 
weights when estimating locations: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) using Spherical variogram 
model with the range of correlation 20.  
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Figure 3: Structure of the Finite Domain Ordinary Kriging (solid line) and Ordinary Kriging (dashed line) 
weights when estimation location: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) using Spherical variogram 
model with the range of correlation 20. 
 

      

      
Figure 4: Structure of the Finite Domain Simple Kriging (solid line) and Simple Kriging (dashed line) 
weights when estimation location: a) (1,7); b) (1.8, 7); c) (2.8, 7) and d) (3.8,7) using Spherical variogram 
model with the range of correlation 20.  
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Figure 5: Change in the structure of the Finite Domain Simple and Ordinary Kriging weights with respect 
to the number of closest data in a string used for location (100,7) using Spherical variogram model with the 
range of correlation 500. String of 3000 data is located at (1,0), (2,0), …, (3000,0), respectively.  

             
Figure 6  Locations of the wells and histogram of the data. 

 
Figure 7: Variograms in the three directions of major continuity for the variable of interest. 
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Figure 8: The middle slice in the XY plane of the 3D model obtained using Ordinary Kriging and Finite 
Domain Ordinary Kriging; maps of the differences (bottom left) and smoothed differences (bottom right). 

 
Figure 9: The middle slice in the XY plane of the 3D model using Simple Kriging (middle left) and Finite 
Domain Simple Kriging I; maps of the differences (bottom left) and smoothed differences (bottom right). 
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Figure 10: Map of the maximal influence of the data in the string obtained by Simple Kriging (left) and 
Ordinary Kriging (right) based on Spherical variogram model with range of correlation 20. 

 
Figure 11: Locations of the 100 wells in the XY plane not used in finite domain estimation (top left) and 
locations of the wells in the XY plane used in finite domain estimation (top right); the middle slice in the 
XY plane of the 3D model for the variable of interest obtained using Ordinary Kriging (middle left) and 
Finite Domain Ordinary Kriging I (middle right); maps of the differences (bottom left) and smoothed 
differences (bottom right) between Finite Domain Ordinary Kriging I and Ordinary Kriging estimates. 
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Figure 12: Locations of the 100 wells in the XY plane not used in finite domain estimation (top left) and 
locations of the wells in the XY plane used in finite domain estimation (top right); the middle slice in the 
XY plane of the 3D model for the variable of interest obtained using Simple Kriging (middle left) and 
Finite Domain Simple Kriging I (middle right); maps of the differences (bottom left) and smoothed 
differences (bottom right) between Finite Domain Simple Kriging I and Simple Kriging estimates. 


